
 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 12, Issue 06, June 2025

1

A Secure and Scalable Online Voting System: Leveraging

Smart Technologies for Digital Governance and Enhanced

Privacy
[1] K. Shalini, [2] R. Rishi Sai Teja, [3] M. Ajith Kumar, [4] A. Keneeth

[1] Assistant Professor, Department of C.S.E, Matrusri Engineering College, Saidabad, Hyderabad, Telangana, India
[2] [3] [4] UG Scholar, Department of C.S.E, Matrusri Engineering College, Saidabad, Hyderabad, Telangana, India

Abstract— The demand for reliable, transparent, and scalable online voting platforms have grown significantly, especially in

democratic nations where traditional voting methods face logistical challenges, voter fraud, and limited accessibility. This work presents

a secure online voting system built using the MERN stack (MongoDB, Express.js, ReactJS, and Node.js), designed to address these

issues through an integrated role-based architecture. The platform accommodates two user roles: administrators, who manage elections,

candidates, and parties, and voters, who securely log in and cast a single vote per election. To ensure end-to-end security and system

integrity, the platform employs JSON Web Tokens (JWT) for authentication, bcrypt for password encryption, AES for vote data

encryption, and CAPTCHA to prevent automated login attempts. With an intuitive user interface and advanced backend validations, the

system enforces access control and voting limitations. This prototype demonstrates the feasibility of secure digital elections and provides

a practical foundation for real-world implementation and future enhancements.

Index Terms— Online voting system, secure e-voting, MERN stack, role-based access control, JWT authentication, AES encryption,

CAPTCHA verification, bcrypt hashing, digital elections, voting platform security.

I. INTRODUCTION

Traditional voting methods frequently encounter obstacles

like logistical delays, voter impersonation, and restricted

accessibility. The increasing prevalence of digital

technologies has led to the emergence of online voting as a

potential solution to enhance efficiency, transparency, and

convenience in electoral processes.

Nevertheless, implementing secure online voting systems

necessitates resolving significant concerns such as data

protection, authentication, and resilience against automated

attacks. This paper introduces a secure online voting system

that utilizes the MERN stack (MongoDB, Express.js,

ReactJS, Node.js) and follows a role-based architecture to

cater to the requirements of administrators and voters.

Authentication is ensured through the use of JSON web

tokens (JWT), password hashing with bcrypt, vote data

encryption with AES, and captcha for bot prevention. The

system is designed with a user-friendly interface and

advanced backend validations, aiming to provide a

dependable model for secure digital elections.

II. OBJECTIVES AND SCOPE

A. Objectives

The goal of this project is to create a safe and user-friendly

online voting system that tackles the problems associated

with traditional voting methods. It guarantees secure

authentication using JWT, bcrypt, and AES, and prevents

unauthorized access through captcha. The system follows a

role-based structure for administrators and voters, enforces

restrictions on multiple votes, and offers a scalable, modular

platform that can be adapted for practical elections.

B. Scope

This project encompasses the creation and execution of a

secure online voting system, utilizing the MERN stack. It

supports two distinct roles administrators and voters each

with specific permissions and capabilities. Administrators

have the responsibility of overseeing elections, managing

candidates and parties, while voters can securely log in and

cast a single vote per election. The system guarantees data

security and reliable operations by utilizing JWT-based

authentication, bcrypt password hashing, AES encryption,

and captcha verification. Although the system is currently

being developed as a prototype, it is designed to be scalable

and adaptable for larger, real-world election environments.

III. LITERATURE REVIEW

In the last two decades, various models have been

suggested to construct secure and user-friendly online voting

systems. The Estonian i-voting system, one of the earliest

approaches, enabled citizens to cast their votes remotely by

utilizing their national identification cards. Despite being an

early adopter of digital voting, concerns were raised

regarding centralized control, potential client-side

vulnerabilities, and the lack of transparency in the auditing

process.

The helios voting system, an online voting platform that

allows for open audits, employs end-to-end verifiability

through the use of homomorphic encryption and

zero-knowledge proofs. While helios is suitable for

low-pressure situations like university elections, it is not

well-suited for large-scale political elections due to its

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 12, Issue 06, June 2025

2

dependence on trust in the server and limited safeguards

against coercion or vote buying.

In [1], researchers proposed a blockchain-based e-voting

system that ensured vote immutability and transparency

using Ethereum smart contracts. However, despite its

robustness against tampering, the system suffered from high

computational overhead, scalability limitations, and usability

issues, especially for non-technical users. Similarly, the work

by Kshetri and Voas [2] highlighted blockchain’s potential

but emphasized implementation hurdles, including regulatory

uncertainty and the digital divide.

Other systems, such as the sensus protocol [3], included

blind signatures to protect voter privacy, but they faced

challenges in terms of performance and scalability. Biometric

authentication-based systems, like those used in [4], provided

more secure identity verification but raised concerns about

data privacy and the expenses associated with setting up the

necessary infrastructure.

Additionally, captcha integration has been studied in

systems like [5] to combat bot-based attacks, but these

measures were often not part of a comprehensive security

framework that encompassed encrypted storage and secure

authentication layers.

Most of these approaches contributed significantly to the

field but either lacked user-friendliness, had complex

implementation requirements, or didn’t integrate a full-stack

architecture suitable for public deployment.

In contrast, the proposed system presents a full-stack

MERN-based solution combining proven technologies such

as JWT for session security, bcrypt for password hashing,

AES encryption for vote confidentiality, and CAPTCHA for

bot protection. This design balances practicality, usability,

and strong security while offering a modular and scalable

foundation adaptable to different election scenarios.

IV. SYSTEM ARCHITECTURE

The proposed Secure Online Voting System's architecture

is designed to support secure, scalable, and role-based digital

elections. It is implemented using the MERN stack

MongoDB, Express.js, ReactJS, and Node.js enabling

full-stack JavaScript development and seamless integration

between frontend and backend components. The architecture

follows a multi-tier model, emphasizing modularity, data

protection, and user role segregation.

A. Core Architectural Layers:

1. Presentation Layer (ReactJS):

This layer provides the interface for both administrators

and voters. It delivers a user-friendly, responsive design

where users can interact with the system based on their

authenticated role. Voters can register, log in, and view or

participate in elections, whereas administrators manage

elections, parties, and candidates through secure panels.

2. Application Layer (Node.js with Express.js):

The server-side logic is handled in this layer. It validates

inputs, manages authentication and authorization, processes

voting operations, handles OTP verifications, and

communicates with the database. APIs are protected by

middleware to ensure that access is granted only to verified

users with valid tokens and appropriate roles.

3. Data Layer (MongoDB):

MongoDB stores collections for users, elections, parties,

candidates, and encrypted vote records. The NoSQL structure

enables flexible and scalable data handling. Sensitive user

credentials and vote data are stored securely using hashing

and encryption techniques.

B. Security Framework

Security is a central focus of the system, implemented

through multiple integrated techniques:

CAPTCHA: Prevents automated or bot-based login

attempts.

Email-based OTP Verification: Adds a second layer of

authentication to validate the user’s identity during

registration and login.

JWT (JSON Web Tokens): Ensures secure, stateless

session management, allowing only authenticated users to

access protected routes.

bcrypt.js: Hashes and securely stores user passwords to

protect against data breaches.

AES (Advanced Encryption Standard): Encrypts vote

data before storing it in the database to maintain the

confidentiality and integrity of user choices.

C. Role-Based Access and Flow

1. Voter Workflow:

A voter signs up by completing CAPTCHA and email

OTP verification. Upon successful login, they are

authenticated using JWT and are allowed to view ongoing

elections. Each voter can cast only one vote per election,

which is encrypted using AES and recorded securely.

2. Administrator Workflow:

Administrators log in securely and gain access to election

management modules. They can create, update, or delete

elections, candidates, and parties. Administrators do not have

access to voter credentials or vote content, maintaining

privacy and role isolation.

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 12, Issue 06, June 2025

3

Figure 1. Admin Dashboard Showing Election & Candidate

Management

A. Interaction Flow and Communication

All frontend-backend interactions are routed through

secure RESTful APIs. The client sends requests with attached

JWTs, and the server validates each token before processing.

Real-time status updates, such as vote success or login

failures, are handled through dynamic frontend rendering and

backend responses.

Figure 2. System Architecture of Secure Online Voting

System

V. PROPOSED METHODOLOGY

The proposed system is a secure, role-based online voting

platform designed to offer a scalable and tamper-proof digital

alternative to conventional elections. Developed using the

MERN stack (MongoDB, Express.js, ReactJS, Node.js), it

integrates multiple layers of security, including token-based

authentication, encryption protocols, human verification

tools, and multi-factor authentication through email-based

One-Time Passwords (OTPs). This section outlines the

system’s architectural methodology and workflows that

ensure confidentiality, integrity, authenticity, and usability.

By combining modern cryptographic standards, layered

authentication, and human-verification mechanisms, the

platform achieves trustworthiness and reliability in digital

elections.

A. Role-Based Access and User Workflow

The system design includes role-based access control to

distinguish between administrators and voters.

Administrators have the authority to establish and manage

elections, determine eligible candidates and parties, and

oversee the election timetable. Nevertheless, they are

prohibited from accessing voter credentials or vote data to

uphold impartiality and protect privacy.

Users are obligated to register on the platform and, after

verifying their identity, are shown a compilation of ongoing

elections. A voter is permitted to cast a single vote per

election. This limitation is implemented through both

frontend validations and backend database checks. Access to

restricted routes is safeguarded through access-control logic

and protected API endpoints, ensuring that only

authenticated users with the appropriate role can interact with

the system.

Figure 3. Secure Vote Casting Page with Candidate List

B. Registration and Authentication Mechanism

The system utilizes a secure, two-step user registration and

authentication process. During the registration process, the

user provides their personal information, such as their name,

email address, and password. The password is transformed

using the bcrypt hashing algorithm before being saved in the

database, making it impossible to decipher in its original

form even if the data is accessed.

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 12, Issue 06, June 2025

4

The process of verifying one's identity when logging in

requires two steps. Initially, the system checks the

email-password combination using bcrypt hash comparison

to ensure its accuracy. After confirming the voter's identity, a

six-digit OTP (one-time password) is generated and delivered

to their registered email address. The user needs to input this

one-time password to successfully complete the

authentication process. Only after successfully verifying the

user's identity, the backend generates a secure token (JSON

web token), which is used to maintain the user's session

during subsequent interactions.

Figure 4. Voter Login Interface with Google reCAPTCHA

Integration

By incorporating email-based OTP as an additional

security measure, account protection is strengthened as it

verifies that access is only granted to users who possess the

registered email account, effectively reducing the likelihood

of credential stuffing or brute-force attacks.

C. Secure Voting via AES Encryption

Once a voter is authenticated, they are presented with a

real-time list of ongoing elections. Before allowing access to

the voting interface, the system checks if the voter has

already cast their vote in the selected election. If the check

passes, the voting UI is rendered.

When a vote is cast, the chosen candidate's identifier along

with relevant election metadata is encrypted using the

Advanced Encryption Standard (AES) algorithm. The

AES-encrypted vote is then transmitted and stored securely

in the database. This ensures vote confidentiality throughout

its lifecycle, even in the case of backend compromise. The

decryption logic is kept isolated and is only invoked during

the final result tallying, performed under administrative

control.

Using AES provides symmetric encryption efficiency

while guaranteeing the privacy and confidentiality of

sensitive voting data.

D. Human Verification with CAPTCHA

To protect the system from automated bots and spam

registrations, a CAPTCHA module is embedded into both the

registration and login interfaces. The CAPTCHA challenge

ensures that only real human users are allowed to proceed

with sensitive operations. This addition safeguards the

platform against brute-force attacks and malicious

automation scripts, further bolstering the integrity of the

system.

The CAPTCHA solution is lightweight and seamlessly

integrated into the user interface, striking a balance between

usability and security without compromising user experience.

Figure 5. Google reCAPTCHA

E. Frontend-Backend Communication and Session

Control

The frontend application, developed using ReactJS,

provides an intuitive and responsive interface tailored for

different user roles. All API calls to the backend server are

facilitated through Axios, with headers carrying JWT tokens

to ensure secure, stateless authentication.

The backend, developed in Node.js using the Express.js

framework, exposes role-specific endpoints that are guarded

by middleware to validate JWTs and enforce access control.

The system also maintains audit logs of key operations,

providing traceability and support for any future forensic

analysis if needed.

To further enhance the robustness of session control,

tokens are invalidated upon logout, and expiration times are

defined to limit their validity, reducing the risk of session

hijacking.

VI. IMPLEMENTATION AND RESULTS

The secure online voting system was developed using the

MERN (MongoDB, Express.js, ReactJS, and Node.js)

technology stack, chosen for its flexibility, scalability, and

support for modern web application development. The

implementation of advanced security

A. Frontend Development

The frontend of the application was built using ReactJS,

enabling a dynamic, component-based structure and

enhancing maintainability and scalability. The user interface

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 12, Issue 06, June 2025

5

(UI) was designed to be intuitive, responsive, and visually

aligned with the Indian voting system's AESthetic, providing

clear navigation for both voters and administrators.

Material-UI and Bootstrap were utilized for responsive

design elements, ensuring cross-platform compatibility.

Routing between views was handled using React Router,

allowing for seamless transitions between login, registration,

elections, and voting screens.

B. Backend and API Layer

The backend of the application was implemented using

Node.js and Express.js, providing a lightweight and efficient

server-side framework for handling API requests, session

management, and database interactions. RESTful APIs were

developed to facilitate secure communication between the

frontend and backend, enabling functionalities such as user

registration, login, vote casting, and election management.

A comprehensive middleware architecture was developed

to validate JSON Web Tokens (JWT), ensuring that only

authenticated users could access protected routes.

Route-specific access was further segregated based on user

roles voter or administrator enforcing role-based access

control (RBAC).

C. Database and Data Security

The system uses MongoDB, a document-oriented NoSQL

database selected for its scalability, performance, and

compatibility with JavaScript-based frameworks. It stores

key entities such as user credentials, election metadata,

candidate lists, and voting records. Sensitive information,

including passwords, is never stored in plain text; instead,

bcrypt.js hashes passwords before storage, strengthening

authentication security against brute-force and dictionary

attacks.

To protect vote confidentiality, each vote is encrypted

using AES before storage, ensuring even administrators

cannot access raw vote data. JSON Web Tokens (JWT)

maintain secure, stateless user sessions post-authentication,

minimizing the risk of session hijacking and identity

spoofing. These combined mechanisms create a robust

security framework to safeguard all critical system

components.

Figure 6. MongoDB Snapshot Showing Encrypted Vote and

Hashed User Password

D. Multi-Factor Authentication

To safeguard user accounts and ensure that only legitimate

voters access the system, a robust Multi-Factor

Authentication (MFA) mechanism was implemented. The

process begins with CAPTCHA verification using Google

reCAPTCHA, which effectively filters out bots and

automated scripts attempting to access the system.

CAPTCHA acts as the first line of defense, ensuring that only

real users proceed to the next authentication step.

Figure 7. Email-Based OTP Verification Screen for Secure

Login

Following a successful CAPTCHA validation, users are

prompted to verify their identity via a One-Time Password

(OTP) sent to their registered email address. This OTP is

generated server-side and securely delivered using the

Nodemailer library. The OTP is time-sensitive and must be

entered within a limited time frame, adding a second layer of

protection. This dual-check mechanism CAPTCHA followed

by email OTP minimizes the risk of unauthorized access,

credential theft, and brute-force attacks. By requiring

something the user knows (credentials) and something the

user has (email access), the system adheres to modern best

practices in secure authentication.

Figure 8. User Email Inbox with Received One-Time

Password (OTP)

The OTP verification process also enhances user

accountability and reinforces trust in the platform. Only after

successful completion of both CAPTCHA and OTP steps is a

session token (JWT) generated and access to the voting

dashboard granted. This secure sequence of verifications

makes it exceedingly difficult for attackers to bypass

authentication, ensuring a more resilient voting environment.

E. Vote Casting Logic

The vote-casting mechanism prioritizes both

confidentiality and integrity. After authenticating and

authorizing a voter, the backend verifies whether the user has

already voted in the specific election using a combination of

the voter’s unique ID and election ID. If no prior vote exists,

the system allows submission.

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 12, Issue 06, June 2025

6

The backend strictly enforces one vote per user per

election. Any duplicate voting attempt is rejected, and the

user is notified. This validation within the controller logic

ensures fairness and prevents multiple votes from the same

user across any device or interface.

Figure 9. Confirmation Screen After Successful Vote

Submission

To preserve ballot secrecy, each vote is encrypted using

the Advanced Encryption Standard (AES) before storage in

MongoDB, ensuring that even in the event of a database

breach, votes remain unreadable without the decryption key.

Encryption is performed server-side to maintain system

integrity.

The backend strictly enforces one vote per user per

election. Any duplicate voting attempt is rejected, and the

user is notified. This validation within the controller logic

ensures fairness and prevents multiple votes from the same

user across any device or interface.

F. Results and Observations

Extensive testing validated both the functionality and

security of the proposed system. A key achievement was the

successful implementation of multi-factor authentication,

requiring users to complete CAPTCHA and OTP verification

before accessing any election interface. This ensured only

legitimate voters participated and blocked bots and malicious

users.

Vote confidentiality was preserved through AES

encryption, with encrypted votes stored securely in

MongoDB and no mechanism to trace votes back to voters,

ensuring full anonymity and preventing administrative

manipulation. The backend reliably detected and blocked

duplicate voting attempts, preventing users from voting

multiple times in the same election. Admin users operated

from a separate dashboard, with no access to voter identities

or vote contents.

Performance testing under simulated load showed fast

response times for vote submission and prompt OTP

delivery, typically within seconds. The system also

demonstrated strong resilience against vulnerabilities like

brute-force attacks, CSRF, and session hijacking, supported

by secure JWT sessions and bcrypt-hashed credentials. These

results confirm the platform’s robustness and readiness for

real-world deployment.

VII. CONCLUSION AND FUTURE SCOPE

This paper presents a secure, scalable, and user-friendly

online voting system aimed at overcoming the limitations of

traditional voting methods in large-scale democratic

processes. Built with the MERN stack (MongoDB,

Express.js, ReactJS, Node.js), the system ensures secure

authentication, vote confidentiality, and defense against

malicious attacks using technologies such as JSON Web

Tokens (JWT), bcrypt is used for password hashing, AES

encryption is employed for vote data, CAPTCHA

verification is implemented for CAPTCHA, and email-based

One-Time Password (OTP) is utilized for multi-factor

authentication. Role-based access control further enhances

security by clearly separating administrative and voter

privileges.

Our implementation demonstrates that secure digital

elections are feasible and can improve participation,

transparency, accessibility, and efficiency while reducing

logistical challenges and costs. The modular and extensible

architecture also allows for easy integration of advanced

features in the future.

Future enhancements could include biometric verification

for stronger identity validation, real-time vote tracking

dashboards for election officials, multilingual support, and

integration with national databases for voter verification. The

system would also benefit from cybersecurity audits and

legal reviews to ensure compliance with electoral laws. With

these developments, the platform holds strong potential for

deployment at municipal, state, or national levels, paving the

way for modernized electoral systems.

REFERENCES

[1] A. Vassil, M. Solvak, K. Vinkel, T. Alnek, A. Trechsel, and

R. Alvarez, "The Estonian e-voting system: Security,

usability and experience," Internet Voting, 2016.

[2] B. Adida, "Helios: Web-based Open-Audit Voting," in

Proceedings of the 17th USENIX Security Symposium,

2008.

[3] M. S. Hwang and C. C. Lee, "A Study of Electronic Voting

System Using Biometric Authentication," International

Journal of Network Security, vol. 10, no. 1, pp. 1–10, Jan.

2010.

[4] P. Kumar, P. K. Tiwari, and D. C. Verma, "Online voting

system using biometric verification and CAPTCHA for

secure authentication," International Journal of Computer

Applications, vol. 180, no. 32, pp. 17–22, Apr. 2018.

[5] D. Gritzalis, "Secure Electronic Voting: New Trends," The

Future of Identity in the Information Society, IFIP Advances

in Information and Communication Technology, vol. 298,

pp. 137–148, 2009.

